Create MultiAssayExperiment object for expression modeling
regressionData.Rd
regressionData
orgnize expression data and experiment design into
MultiAssayExperiment object that can be further used in xcore
framework. Additionally, function calculate basal expression level, for
latter use in expression modeling, by averaging base_lvl
samples
expression values.
Arguments
- expr_mat
matrix of expression values.
- design
matrix giving the design matrix for the samples. Columns corresponds to samples groups and rows to samples names.
- base_lvl
string indicating group in
design
corresponding to basal expression level. The reference samples to which expression change will be compared.- drop_base_lvl
logical flag indicating if
base_lvl
samples should be dropped from resulting MultiAssayExperiment object.
Value
MultiAssayExperiment object with two experiments:
- U
matrix giving expression values averaged over basal level samples
- Y
matrix of expression values
design with base_lvl
dropped is stored in metadata and directly
available for modelGeneExpression
.
Details
Note that regressionData
does not apply any normalization or
transformation to the input data! Use prepareCountsForRegression
if you want to start with raw expression counts.
Examples
data("rinderpest_mini")
base_lvl <- "00hr"
design <- matrix(
data = c(1, 0, 0,
1, 0, 0,
1, 0, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 0, 1,
0, 0, 1,
0, 0, 1),
ncol = 3,
nrow = 9,
byrow = TRUE,
dimnames = list(colnames(rinderpest_mini), c("00hr", "12hr", "24hr")))
mae <- regressionData(
expr_mat = rinderpest_mini,
design = design,
base_lvl = base_lvl)